Reply to the comment by M A Almeida et al

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 291143
(http://iopscience.iop.org/0305-4470/29/5/028)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.71
The article was downloaded on 02/06/2010 at 04:09

Please note that terms and conditions apply.

COMMENT

Reply to the comment by M A Almeida et al

M Senthil Velan and M Lakshmanan
Centre for Nonlinear Dynamics, Department of Physics, Bharathidasan University, Tiruchirapalli 620024, India

Received 16 August 1995

Abstract. We reply to the comment on the Lie symmetries of the 2D Lotka-Volterra system.

The comment by Almeida et al [1] pertains more to [2] cited in their paper rather than to our paper given in [1], where we have given a short discussion in section 4.1 on the existence of infinite dimensional Lie algebras corresponding to time-dependent symmetries for the two-dimensional Lotka-Volterra (LV) equation. In any case we wish to make the following observations. The existence of a time-independent integral of motion

$$
\begin{equation*}
I_{2}=x^{-a} y^{b} \mathrm{e}^{-(x+y)} \tag{1}
\end{equation*}
$$

for arbitrary values of the parameters a and b for the LV equation is well known (see for example [2]) and so naturally the fact that the corresponding time-independent symmetry is transcendental is also known. What is more important is to find other interesting symmetries, which as found in [2] and [1] cited in the 'comment' turns out to be time-dependent and polynomial in the variables x and y, giving rise to the time-dependent integral

$$
\begin{equation*}
I_{1}=\mathrm{e}^{-a t}(x+y) \tag{2}
\end{equation*}
$$

but only for the specific parametric choice $(a+b)=0$ and not for general choices of a and b.

An immediate consequence of the existence of both the integrals I_{1} and I_{2} for the Lotka-Volterra equation for the choice $(a+b)=0$ is that an explicit solution can be given as

$$
x=\frac{I_{1} \mathrm{e}^{a t}}{1+I_{2}^{(1 / a)} \exp \left(I_{1} \mathrm{e}^{a t} / a\right)}
$$

and

$$
\begin{equation*}
y=I_{1} \mathrm{e}^{a t}-\frac{I_{1} \mathrm{e}^{a t}}{1+I_{2}^{(1 / a)} \exp \left(I_{1} \mathrm{e}^{a t} / a\right)} \tag{3}
\end{equation*}
$$

for the above parametric choice. For the general case such an explicit solution does not seem to be possible.

References

[1] Almeida M A, Moreira I C and Ritter O M 1996 J. Phys. A: Math. Gen. 291141
[2] Minorsky N 1962 Nonlinear Oscillations (Princeton, NJ: Van Nostrand)

